Search results for "fuel economy"
showing 5 items of 5 documents
A six legs buck-boost interleaved converter for KERS application
2020
This paper addresses the design of a bi-directional DC/DC power converter to interface a supercapacitor bank and a motor-generator unit. The design is based on an interleaved six legs topology in which the current is shared among six inductors to minimize their weight and cost, allowing, besides, a low switching frequency to lessen switching losses. The converter is conceived to be employed in an electric Kinetic Energy Recovery System for Internal Combustion Engine Vehicles. The system makes use of a supercapacitor as a storage system, and a motorgenerator unit connected to the drive shaft for vehicle acceleration and braking. The system uses available commercial devices, thus obtaining a …
Hybrid electric vehicle powertrain design: Construction of topologies and initial design schemes
2018
This paper introduces the generic representation and construction methods for the architectures of the four-wheel-drive hybrid electric vehicle (HEV) powertrain, which achieve the unified rules to represent and construct all types of HEV powertrains. To map the architecture into numerical variables and add it into optimization, the kinematic matrix of the HEV powertrain is extracted corresponding to the topological structure. Based on the torque distribution requirement of four-wheel-drive HEV, the initial design schemes (architecture and parameters) are created by charge-under-go feasibility inspection.
A regenerative braking system for internal combustion engine vehicles using supercapacitors as energy storage elements - Part 2: Simulation results
2020
Abstract In this two-part work, an electric kinetic energy recovery system (e-KERS) for internal combustion engine vehicle (ICEV) is presented and its performance evaluated through numerical simulations. The KERS proposed is based on the use of a supercapacitor as energy storage, interfaced to a brushless machine through a properly designed power converter. In Part 1, the system is described and analysed, and the mathematical model used for the simulations is presented. For each component of the KERS, the real efficiency and the power or energy limitations are adequately considered. In Part 2, the energetic and economic advantages attainable by the proposed KERS are evaluated using MATLAB S…
A regenerative braking system for internal combustion engine vehicles using supercapacitors as energy storage elements - Part 1: System analysis and …
2020
Abstract In this two-part work, an electric kinetic energy recovery system (e-KERS) for internal combustion engine vehicle (ICEV) is presented, and its performance evaluated through numerical simulations. The KERS proposed is based on the use of a supercapacitor as energy storage, interfaced to a brushless machine through a properly designed power converter. In part 1, the system is described and analysed, and the mathematical model used for the simulations is presented. For each component of the KERS, the real efficiency, and the power or energy limitations are adequately considered. In part 2, the energetic and economic advantages attainable by the proposed KERS are evaluated using MATLAB…
Modeling and Backstepping Control of the Electronic Throttle System
2013
Published version of an article in the journal: Mathematical Problems in Engineering. Also available from the publisher at: http://dx.doi.org/10.1155/2013/871674 Open access Electronic throttle is widely used in modern automotive engines. An electronic throttle system regulates the throttle plate angle by using a DC servo motor to adjust the inlet airflow rate of an internal combustion engine. Its application leads to improvements in vehicle drivability, fuel economy, and emissions. In this paper, by taking into account the dynamical behavior of the electronic throttle, the mechanism model is first built, and then the mechanism model is transformed into the state-space model. Based on the s…